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Summary. Metal–ligand bonding in transition metal halide molecules and complexes with different

central ions, oxidations states, and coordination numbers: CrIIIX6
3�, CrIVX4, CrIIX2 (X¼ F,Cl,Br,I),

MIIICl6
3�(M¼Mo,W), MIIIðH2OÞ6

3þ
(M¼Cr,Co) and Re2Cl8

2� has been studied in terms of the

Extended Transition State (ETS) energy patitioning scheme within the DFT and electron density

analysis (the Laplacian of the electron density and the electronic localization function). Bonding is

found to be dominated by ionicity in all cases, especially so for complexes with higher coordination

numbers. Covalent contributions to the metal–ligand bond are found to be mainly due to the nd-

electrons and to lesser extent due to the metal (nþ 1)s and (nþ 1)p-orbitals, contributions from

(nþ 1)s increasing when going to lower coordination numbers. Metal–ligand bonding analysis have

been used in order to check some concepts emerging from ligand field theory when applied to the

spectroscopy and magnetism of transition metal complexes. It is pointed out that for complexes of high

symmetry (MX6, Oh, MX4, Td, and MX2, D1h) electron density analyses gain interpretative power when

partitioned into contributions from occupied orbitals of different symmetry.

Keywords. DFT; Energy decomposition analysis (EDA); Laplacian of the electron density; Electronic

localization function (ELF); Angular overlap model (AOM).

I. Introduction

Chemical bonding in Transition Metal (TM) complexes has been intensively stud-
ied by experimental and theoretical methods. Difference density analysis as derived
by highly resolved X-ray crystallography [1] and later modern quantum chemistry
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calculations (MO-theory – ab-initio, Morokuma [2], DFT [3] – or valence-bond
theory, Pauling [4–6]) provide important insight into the nature of the metal–ligand
bond. An extensive review on quantum chemical methods for analyzing the
chemical bond and their applications to a wide range of closed shell TM complexes
with organic ligands (carbene, carbyne, alkene, and alkyne �-complexes) as well as
complexes with CO, BF, BO�, BNH2, and H ligands has been published by
Frenking and Fr€oohlich [7] and we refer the reader to their work.

In this study we would like to concentrate on the chemical bonding in open-
shell molecules and complexes of TM with halide (X¼ F,Cl,Br,I) and H2O ligands
which are less well studied theoretically. In our analysis we include complexes of
TM-ions with different oxidation states II(Cr–d4), III(Cr, Mo, W–d3, Co–d6, and
Re–d4), and IV(Cr–d2) as well as different Coordination Numbers (CN¼6,4, and
2). The species studied are depicted in Fig. 1 along with their geometries.

For complexes with open d-shells, electronic structure has been studied experi-
mentally using UV-VIS electronic absorption, emission, and EPR spectroscopies.
The most broadly used bonding model for these compounds has been ligand field
theory (LFT). This is an orbital interaction model which focuses on the d-orbitals
of the TM and the valence p- and s-orbitals on the ligands. A reference point of
discussion in LFT is the interaction between one TM cation and the surrounding
ligands. For ligand-to-metal donor–acceptor bonds, LFT leads to destabilization of
the metal jndi and to a stabilization of the ligand jsi and jpi atomic orbitals to give
rise to antibonding and bonding molecular orbitals of the resulting complex,
respectively. A simplified version of the LFT theory has been the Angular Overlap
Model (AOM), which considers the splitting of the TM d-orbitals as resulting
from overlap with the ligands. The energies of this splitting could be deduced from
the interpretations of spectra and lead to a classification of ligands according to
their � and �-donor properties. Thus, from a series of complexes Cr(NH3)5X,

Fig. 1. Transition metal molecules and complexes and their structures studied in this work
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X¼ F,Cl,Br,I, and H2O a classification of these ligands was possible based on
values of the corresponding energy parameters – e� and e� [8, 9].

In LFT, information about the metal ligand bond is obtained from a considera-
tion of the electronic states originating from a more or less well defined dn elec-
tronic configuration to allow application of perturbation theory and overlap
considerations when calculating the multiplet structure. Contributions of j4si and
j4pi orbitals to the bonding are generally ignored. Semi-empirical LF parameters
derived from the spectra of these complexes involve both ground and excited
state contributions resulting from electron replacements within the antibonding
jndi orbitals. However, bonding in molecules and complexes is mostly governed
by bonding electronic interactions. Being beyond the reach of UV-VIS spectro-
scopies, those interactions can only be studied using quantum-chemical, first prin-
ciple methods. The bonding analysis of the present study makes use of the
extended transition state method (ETS) by Bickelhaupt and Baerends [3b] as
implemented in the Amsterdam DFT (ADF) program [10]. It allows to decompose
the bonding energy between the constituting fragments into chemically meaningful
components. A drawback of this method is the need of selecting starting fragments
(pro-molecule) with a proper electronic configuration, and – in case of polyatomic
ligands – with the corresponding geometry. Chemical intuition and experience has
to be invoked when choosing fragments for such analysis. In view of this, in
addition to the ETS method, we have chosen another method in our analysis. It
is based on the pioneering work of R. Bader [11] which allows to define atoms
within molecules in an unique and quantum-mechanically well justified way. The
only piece of information needed for such analysis is the Laplacian of the electron
density which is also available from DFT.

Finally, we use another closely related quantity – the electron localization
function (ELF) introduced by Becke and Edgecombe [12] and refined and applied
by Savin, Silvi, and Kohout [13–15] to obtain a pictorial representation of the
underlying metal–ligand bonding interactions. The topological analysis of the elec-
tron localization function [16a–16c] is intended to provide a direct space mathe-
matical model to the Lewis theory and the valence state electron pair repulsion
(VSEPR) model of Gillespie and Nyholm. It further allows to propose non-ambig-
uous definitions of covalent and dative bonds thus making it possible to apply the
model to analysis of bonding in TM complexes [16d].

This work is structured as follows. In Sections II we briefly present the basic
ideas behind the ETS method (Section II.1), the topological analysis of the chem-
ical bond (Bader analysis, Sections II.2.1), and the electronic localization function
(Section II.2.2). In Section II.3, the AOM for the cases studied in this work is
presented, followed by a closing computational Section II.4. In Sections III we
present our results considering TM complexes in the order of decreasing coordina-
tion number (CN¼6, Section III.1; CN¼4, Section III.2; CN¼2, Section III.3).
Finally, the bonding in Re2Cl8

2� will be discussed in detail with special emphasize
on the influence of the Re–Cl interactions on the Re–Re bonds (Section III.4). In a
concluding Section IV we will discuss the effect of the CN, of the oxidation state,
and of the nature of the TM within a period or within a group of the periodic table.
The importance of jðn þ 1Þsi and jðn þ 1Þpi valence orbitals of the TM for the
metal to ligand bond is re-addressed and discussed. Here, we also compare the
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overall attractive part of the metal–ligand bonding, with that part due to the
repulsive antibonding jndi-electrons only, thus aiming to connect chemical
bonding and ligand field spectroscopy. At this place we quote the seminal book
of C. K. Jørgensen, ‘‘Absorption spectra and chemical bonding’’ [17] in which
many original ideas have been proposed, but an exhaustive theoretical analysis
was lacking at that time. It is the ambitious task of the present study to fill this
gap using modern DFT and recent bond theoretical developments.

II. Theory

II.1. The Extended Transition State Method (ETS)

The ETS method [3b] which is equivalent to the energy decomposition analysis
of Morokuma et al. [2], starts from an intermediate state between that of the non-
interacting fragments and the product molecule. In this state (pro-molecule) the
electron densities of molecular subunits are taken as frozen at their actual positions
within the molecule and the electrostatic interaction energy DEElstat between elec-
trons and nuclei is calculated classically. It is usually a negative quantity reflecting
attractive forces. The resulting fragment wavefunctions are non-orthonormal. In a
second step an ortogonalisation and an antisymmetrisation is carried out in order to
obtain a wavefunction which obeys the Pauli’s principle. The energy DEPauli cal-
culated using this function, is called the Pauli (exchange) repulsion. The resulting
hypothetical state is called the transition state (TS). In a third step the TS is fully
relaxed during an SCF procedure and yields the electron density and the energy of
the molecule in its final ground state. The gain of energy due to orbital relaxation,
DEorb along with the DEElstat term are the driving forces which lead from the pre-
selected frozen fragments to the final molecule. The orbital relaxation term is due
to electron transfer from doubly and singly occupied orbitals of a given fragment to
empty or half filled orbitals of neighbouring fragments and reflects electron delo-
calization (covalency). It bears valuable chemical information, because, in higher
symmetric molecules, DEorb can be further decomposed into orbital contribution of
different symmetry and does allow bond-analysis in terms of � and �-contributions.
In cases like this, transition-metal fragments can be considered as being of cylin-
drical symmetry as in the AOM, which has been applied so successfully to analyze
analogous effects for antibonding d-orbitals. The DEorb energy contains also terms
due to excitation of electrons from occupied to empty orbitals within the same
fragment. This is orbital polarization energy and reflects mixing of fragment orbi-
tals due to symmetry lowering when going from the separate fragments to their
ultimate positions in the molecule. This is similar to the d-orbital splitting con-
sidered in crystal field theory. Unfortunately, charge-polarization and charge-trans-
fer are unseparable in this description. Finally, it should be pointed out that both
metal and ligands will need some adjustment of their valence (oxidation) states
which will bring them in a state where interaction with other fragments is parti-
cularly favored. The corresponding energy, the preparation energy DEPrep is of
electronic and=or geometric origin and has to be calculated before setting up the
promolecule. Such a possibility is offered by the Amsterdam Density Functional
packages where molecules are always calculated starting from reference fragments.
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We thus end-up with an expression for the energy DE of the reaction, say
A þ B ! AB, as shown by Eq. (1).

DE ¼ EðABÞ � EðAÞ � EðBÞ ¼ DEprep þ DEint

¼ DEprep þ DEElstat þ DEPauli þ DEorb ð1Þ
In Table 1 we include some prototype examples for ETS analysis for H2, NaCl,

and F2 which are particularly useful in view of the following discussion (vide
infra). In all cases, taking atoms in their ground states as reference fragments,
DEorb is the dominating energy term in DEint (DEprep¼ 0 in these cases). It consists
of negative bonding terms, and sometimes strongly positive antibonding ones: such
as DEorb(�g) and DEorb(�u) for F2, respectively. However there are also negative
terms due to orbital polarization: the energies DEorb (�g) and DEorb (�u) for the �g

orbitals of F2, which being, doubly occupied, should not contribute to the bonding.
It should be pointed out that the outcome of an ETS analysis depends stongly

on the chosen fragments. Thus, for H2, taking H fragments with a single electron on
each, there must be no DEPauli terms. As seen from inspection of Table 1, this is
only fulfilled when using spin-polarised fragments allowing � and � spins to loca-
lize on different atoms resulting from a symmetry breaking from D1h to C1v. This
is less pronounced for atoms with more than 1 electron. Thus, for F2, very similar
results are obtained comparing calculations with spin-restricted or spin-unrestricted
fragments. However, the situation changes when one has to make a choice between
neutral and ionic fragments. Thus, for NaCl a rather different result is obtained
when comparing calculations for atomic [Na, Cl] and ionic [Naþ, Cl�] fragments

Table 1. Energy decomposition analysis for H2, NaCl, and F2 using the ETS methoda

Molecule H2 NaCl F2

gr.state electr. configuration �g
2 �2 �4�4 �g

4�u
2�g

4�u
4

reference fragments H(1s1) Na(2s1) Naþ F(2s22p5)

H(1s1) Cl(2s22p5) Cl� F(2s22p5)

restr. unrestr.

DEPauli
b 10.03 �0.58 2.55 0.97 12.20

DEElstat
b 0.26 0.27 �1.33 �6.16 �3.67

DEorb
b �17.08 �4.31 �5.70 �0.63 �12.08

DEint
b �6.79 �4.62 �4.47 �5.82 �3.55

DEint

0c �4.55 – �4.04 �5.82 �2.73

DEprep
d – – 1.78

orbital increments of DEorb
b �g �12.97 � �0.80 �0.37 �g �5.81

� �4.31 � �4.91 �0.26 �u 8.58

�u �4.11 �g �6.30

�u �8.54

a Geometry optimizations using a PW91 functional; bond distances (Å): H–H 0.749, NaCl 2.420, F–F

1.433; b with respect to spin-restricted atomic fragments; c with respect to atomic fragments in their

spin-unrestricted ground states: 2S(H), �1.12 eV, 2S(Na) �0.21 eV, 2P(Cl) �0.22 eV, 2P(F) �0.41 eV;
d DEprep(NaCl)¼E(Naþ)�E(2S, Na)þE(Cl�)�E(2P, Cl)¼ 5.19� (�0.21)þ (�3.84)� (�0.22)¼
1.78 eV
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(Table 1). In the latter case, bonding is dominated strongly by ionic forces (the
DEElstat term), while the sum of DEorbþDEPauli is nearly vanishing. It is ionic
bonding which is the driving force for the formation of ionic solids, such as NaCl,
and it has been shown that lattice energies of ionic crystals are dominated by 99%
by electrostatic (Madelung) energy. We notice, that going from atomic to ionic
fragments, requires a significant preparation energy, which for NaCl consists of
the energy for the 2S(Na)!Naþ transition minus the energy gained by the
2P(Cl)!Cl� process. Considerations like this trace the essential steps of the well
known Born-Haber cycle used for calculation of the lattice energy in ionic crystals.

II.2. Bonding Schemes Based on the Electron Density and its Analysis

II.2.1. The Laplacian of the Electron Density (Bader Analysis)
and its Resolution into Orbital Symmetry Components

Valuable information about the chemical bond can be obtained from the electron
density, which is in principle an observable quantity, and its analysis which is the
subject of the ‘‘Atoms in Molecule’’ (AIM) method by R. Bader [11]. Let us assume
that we know the electron density in every points of space, �(x, y, z). Focussing on
an arbitrary but fixed point in space (xo, yo, zo) we can expand � in a Taylor series
(Eq. (2)).

�ðxo þ �x; yo þ �y; zo þ �zÞ

¼ �ðxo; yo; zoÞ þ
@�

@x

� �
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� �
yo; zo

�y�z ð2Þ
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Fig. 2. (a) Contour plots of the Laplacian constructed using the total electron density for the H2,

NaCl, and F2 molecules; values for the Laplacian (second derivative of the density, taken with a

minus sign) at the bond critical points (Lbcp) are included to show the overall charge concentration

(in the case of H2) and charge depletion (in the case of NaCl and F2); contour plots are constructed

using program tools cited under Ref. [11b] and contour lines depicted using (default) values of the

Laplacian of the electron density (�0.02, �0.04, �0.08, �0.20, �0.40, �0.80, �2.00, �4.00,

�8.00, �10.00, 0.0, 0.02, 0.04, 0.08, 0.20, 0.40, 0.80, 2.00, 4.00, 8.00, 10.00); negative (charge

depletion) and positive (charge concentration) values are plotted with solid and dashed lines, re-

spectively; (b) Contour plots for the electron density (�) and Laplacian (L, negative of second

derivative) of the electron density for F2, decomposed into � (�gþ �u) and � (�gþ�u) symmetry

components; L values for the bond critical points (Lbcp), for the �-plot, and the ring and cage critical

points (Lrcp, Lccp, respectively, for the �-plot) are included; contour plots are constructed using

program tools cited under Ref. [11b] and contour lines depicted using (default) values of the

Laplacian of the electron density (�0.02, �0.04, �0.08, �0.20, �0.40, �0.80, �2.00, �4.00,

�8.00, �10.00, 0.0, 0.02, 0.04, 0.08, 0.20, 0.40, 0.80, 2.00, 4.00, 8.00, 10.00); negative and positive

values are plotted with solid and dashed lines, respectively; plots of the density are given using

default values (0.001, 0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.20, 0.40, 0.80, 2.00, 4.00, 8.00, 20.00,

40.00, 80.0 with values increasing from the outer to the inner region of the molecule)
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The first and second derivatives in Eq. (2) define a vector r��!
and a (symmetric)

matrix of second derivative (Hessian) H (Eq. (3)).
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Their components can easily be calculated from the knowledge of the density �ð~rrÞ
on a 3D grid, as available from most quantum chemistry codes.

The topological analysis of ðrq
�!Þr0 makes it possible to locate stationary points

in � which might correspond to local minima, maxima, or saddle points. They
further allow to identify atoms or fragments of atoms in a molecule or atomic
subspaces bordered by surfaces S (basins) on which the flux of the gradient
vanishes (Eq. (4)) where ðrq

�!ÞS is calculated at each point of the surface, nS
! is

any vector perpendicular to the surface.

ðrq
�!ÞS � nS

!¼ 0 ð4Þ
It has been shown that the virial theorem holds for these basins and integration

of � over them allows to get atomic or fragment charges within the molecule. The
matrix (H)ro allows to calculate the Laplacian of the electron density as a sum of its
diagonal elements (Eq. (5)), which is invariant with respect to the choice of the
coordinate system.

L ¼ � 1

2

@2�

@x2
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þ 1

2

@2�

@y2
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yo
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2

@2�

@z2

� �
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ð5Þ

Diagonalization of the matrix H, leading to principle curvatures as the eigenvalues
and principal axis as the eigenvectors allows to explore the topology of the electron
density at any given point of space. The values of these quantities at the points
where ðrq

�!Þ vanishes (critical points) are of particular interest. They are usually
denoted by (r, s), with r standing for the rank (number of non-zero eigenvalues) and
s for the signature (sum of signs of the eigenvalues). Bond critical points, denoted
as (3, �1) are such, where two eigenvalues are negative, while one is positive
corresponding to (two) maxima and one minimum with respect to the directions
defined by the eigenvectors. The eigenvector for the positive eigenvalue connects
two atoms and defines a bond path between them. Positions of the nuclei are
characterized by a maximum of � [(3, �3) critical points, or nuclear attractors].
Furthermore one finds ring and cage critical points where two or three eigenvalues
(curvatures) of H are positive, (3, 1) and (3, 3); examples are given by cyclic
(cyclopropane) and cage shaped (P4) molecules, respectively. It has been shown
that the values of L at each point (Eq. (5)) can be related with the kinetic G(r) and
with the potential V(r) energy density at that point (Eq. (6)) where positive and
negative values of (L) characterize regions in space in which charge is accumulated
or depleted, respectively.

2Gð r!Þ þ Vð r!Þ ¼ �Lð r!Þ ð6Þ
In Fig. 2 we show three typical examples, two for one electron pair bonding (H2

and F2) and one for a typical ionic molecule as NaCl. As expected, electronic
charge concentration and depletion between the nuclei of H2 and NaCl is observed.
However, for F2 we don’t see any increase of L between the nuclei. As has been
pointed out by Cremer and Kraka for F2 [18], L is negative at the bond critical point
rc (�2.908 e.Å�5), but still, the sum of G(rc)þV(rc)(¼2.247–4.292¼ �2.045
Hartree. Å�3) results in a negative value of the total energy density (E¼GþV).
The unusual bonding in F2 has been explained by VB-theory [19] in terms of a very
strong mixing between covalent and ionic resonance structures due to a large and
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negative resonance integral � in which the kinetic energy term dominates [20].
This has been called a ‘‘charge shift bonding’’ [19]. It is interesting and important
to note that (�L) can still reflect these results when decomposed into contributions
from � and � character – [�L(�)] and [�L(�)], respectively. Figure 2b nicely
shows this; thus the plot of [�L(�)] displays two electron pairs between the F
nuclei, each belonging to its closest nuclei but with a clear deformation oriented
toward the neighbouring nucleus. Also the �-lone pairs are clearly discerned, as
well as the �-oriented lone pairs on F, which now, due to the Pauli-repulsion are
oriented in a direction outwards the F–F bond axis.

The distinction between orbitaly resolved contributions in L and in ELF (see
next section) plays a central role in our analysis of the TM–ligand bond as we shall
see in Section III.

Finally, it is worth mentioning that the electron pair density in conjunction with
the AIM theory enables one to determine the average number of electron pairs that
are localized to each atom (A) and the number that are formed between any given
pair of atoms A and B. Within this quantitative AIM framework [21] atomic loca-
lization and delocalization indices noted �(A) and �(A, B) have been defined, the
latter being sometimes referred to as bond orders. Applications of this approach to
characterize metal–ligand bonding in TM di- and tri-halides have already been
reported [22].

II.2.2. The Electron Localization Function (ELF)

The introduction of the electron localization function (ELF) by Becke and
Edgecombe in 1990 [12] has lead to a quantitative index to describe intuitive
concepts like chemical bond and electron pair. This function allows to describe
in a topological way a quantity related to the Pauli exclusion principle. The local
maxima of this function define ‘localization domains’ of which there are only
three basic types: valence domains (bonding, non-bonding) and core domains
(see below). The spatial organization of localization domains provides a basis
for a well-defined classification of bonds. An obvious advantage of this function
is that it can be derived from computed and experimental electron densities.

The electron localization function has been originally derived from the condi-
tional probability of finding an electron of spin � at r0 when an electron with the
same spin is located at~rr. As proposed by Becke and Edgecombe, ELF is a simple
function taking values between 0 to 1 and measuring the excess local kinetic
energy due to the Pauli repulsion.

For a single determinental wavefunction built from Hartree-Fock or Kohn-
Sham orbitals ’i and an electron density �� the value of ELF is given by Eq. (7)
where D� and D0

� are described by Eqs. (8) and (9).

ELF ¼ 1

1 þ ðD�

D0
�
Þ2

ð7Þ

D� ¼
XN
i¼1

jr’ij2 �
1

4

jr��j2

��
ð8Þ
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D0
� ¼

3

5
ð6�2Þ2=3�5=3

� ð9Þ
In Eqs. (7) and (8) D� is the excess local kinetic energy due to Pauli repulsion and
represents the curvature of the electron pair density for electrons of identical �
spins (the Fermi hole) for the actual system. D0

� is the analogous quantity for a
homogeneous electron gas with the same density at point of space r (�(r)). D� is a
positive quantity which is small in regions of space where the electrons do not
experience the Pauli repulsion, that is, where electrons are alone or form pairs with
anti parallel spins (bosons). It is also small if pairs of parallel spin electrons are far
away from each other and large if they are close in space.

ELF can be calculated from the known �� on a grid in the three-dimensional
space. Usually the quantum chemical calculations give results that are non-local
quantitative, predictive, and method dependent. In the discussion of the chemical
bonds, chemists use arguments that are local, qualitative, explicative, and approx-
imation independent. ELF fills the gap between these approaches by providing a
mathematical definition of the bond as a local property of matter. Furthermore
since quantum mechanics is valid by definition, the property can be obtained from
theory and from experiment and moreover is close to the Lewis nomenclature. One
main advantage is the independance from the approximation level of theory.

ELF can take values between 0 and 1. For regions where there is no localization
of electron pairs or regions where electron of the same spin are predominant, ELF
has a value close to 0. For regions where there is a high pair localization and also in
region dominated by a single, localized electron, ELF is close to 1. For a value of
ELF¼ 0.5, the region is exactly of electron-gas type.

Topological analysis of ELF by Savin and Silvi [13, 16a–16c] allow to locate
critical points (m) in space, where rELF(r) is zero and which are characterized by
their index I(m) – the number of positive eigenvalues of the second derivative
matrix. Critical points of index 0 and the manifold of points confined to them
define an attractor (local maximum) and the basin of an attactor, respectively.
Critical points of index larger than 0 is a separatrix: it is a boundary between
basins. There are two types of basins – core and valence ones. The structure given
by the core basins closely resembles the inner atomic structure. The valence basins
are characterized by their synaptic order – the number of cores to which they are
connected. Any subset of the molecular space bounded by an external closed
isosurface ELF(r)¼ f is a domain; for each point of this subset the inequality
ELF(r)>f holds. For any system there exist low values of ELF(r)¼ f defining an
unique composite parent domain. If one increases the values of f of an isosurface of
ELF its topology may change dramatically at some critical (threshold) values – a
reducible (composite) domain splits into several domains each containing fewer
attractors than the parent domain. This reduction appears at turning points of index
1 located on the separatrix of two basins involved in the parent domain. Ordering
of these turning points (localization nodes) by increasing f generates tree (bifurca-
tion) diagrams reflecting the hierarchy of the core and valence basins in an order of
increasing localization (ELF values). In a molecule for example, the initial parent
domain first splits into core domains and a single valence domain which contains
all valence attractors with as many holes inside as there are atomic cores in the
molecule. A given core contributes by one to the synaptic order of an adjacent
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valence basin. The partition of reducible domains into core and valence domains is
called core=valence bifurcation. It can occur in two different ways: either the core
irreducible domains split before the valence ones, or the core=valence separation
takes place after the valence division into two or more domains. While the first
process is characteristic for molecules or molecular ions, the second one is char-
acteristic for weak interactions among fragments. An ELF study on VOþ

x and VOx

(x¼ 1–4) clusters based on the analysis of the bifurcation of the localization
domains [23] provides a valuable information about the V–O bond and will be
discussed in the context of our results in Section III.3.

We can conclude, that the topological analysis of the gradient field of ELF
provides a framework for the partition of the molecular space into basins of attrac-
tors having a clear chemical meaning. While basin populations are evaluated by
integrating the one-electron density over basins, the variance of the basin popula-
tions provides a measure of the delocalization. An application of this approach
to study geometries of formally d0 MXn (X¼ F,H,CH3, and O; M¼Ca to Mn,
n¼ 2–6) contributes to understanding of their non-VSEPR geometries [24]. An
overview of the possibilities offered by the topological analysis of ELF ranging
from isolated atoms to solids may be found elsewhere [13, 22, 25].

We should finally note, that applications of AIM and ELF gain interpretative
power when separated into components of different symmetry. It has been shown,
for example, that the separation of ELF into its � and �-components in aromatic
molecules allows to quantify the concept of resonance and to set up a scale for
aromaticity [26]. A possible justification of this approach could be done by re-
expressing ELF in terms of time independent electron transition current densities
between occupied orbitals [27].

II.3. Angular Overlap Model [28–31]

The energies of the d-orbitals for complexes with ligand to metal donor acceptor
bonds are described by energies for �¼ � and �-antibonding, which pertain to well
aligned metal 3d- and ligand p-orbitals, e�. Using perturbation theory and the
Wolfsberg-Helmholz approximation for the resonance integral H(M-L)� one obtains
Eq. (10) for e�, showing a quadratic dependence on the group overlap integral S�.

e�ffi
H M � Lð Þ2

�

HM� HL

� H2
L

HM� HL

� S2
� ð10Þ

e� parameters can be obtained using spectral information from a fit of ligand
field expressions. For an octahedral complex only one ligand field splitting param-
eter (Eq. (11)) can be derived which do not allow to separate e� and e�.

10Dq ¼ 3e�� 4e� ð11Þ
This situation changes when going to symmetric complexes. Figure 3 illustrates

this for a square-pyramidal ML5 complex where also AOM expressions for the
energies of the d-orbitals are given. For a non centro-symmetric complex a mixing
of jsi and jpi into the jdi orbitals of the TM is possible. This is particularly pro-
nounced for the dz2-4s mixing that leads to lowering of the dz2 orbital in energy,
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which is described by an additional parameter DE3d-4sp and which is known to
become mostly non-bonding in the limiting case of a square-planar complex
[32–33]. DFT calculations enable to use Kohn-Sham orbital energies to get values
of 3e�,e� and DE3d-4sp, and to compare these with the results obtained from ETS
bonding analysis, pertaining to all occupied orbitals. Thus a clear distinction
between bonding and antibonding contributions becomes possible and will be dis-
cussed together with the analysis based on the electron density (Laplacian and ELF).

II.4. Computational Details

DFT calculations and bonding analysis in this work have been performed using the
Amsterdam Density Functional (ADF) program [10] (release 2004.01) using the
Perdew-Wang (PW91) gradient corrected functional. Triple zeta basis sets (TZP) as
provided by the program data base have been taken for the calculations. Geometry
optimizations allowing to fix the geometry of every complex have been carried out
using the LDA implemented in the VWN-functional. This procedures are known to
yield TM–ligand bond distances in good agreement with experiments.

The octahedral MIIIX6
3� complexes studied in this work are highly negative

charged. One may ask how bonding is affected by a charge compensating medium

Fig. 3. Splitting of the d-orbitals in a quadratic pyramidal TM complex with five ligands – four

equatorial, one axial; parameterization of these energies in terms of the angular overlap model

without (left) and with 3d-4s, 4p mixing (right) is given along with the unperturbed 3d (left) and

4s, 4p (right) orbitals; e�(ax), e�(ax) and e�(eq), e�(eq) pertain to antibonding energies due to the

axial and equatorial ligands, respectively, and DE3d-4sp energies reflect the stabilization of the 3dz2

orbital by mixing with mostly (4s) and to lesser extent with the (4p) orbital; the lowering of energy of

the e(dxz,dyz) orbital due to mixing with the 4px, 4py functions is neglected; these equations have

been used to deduce AOM parameters e� and e� from KS-DFT calculations on the ground state of

CrIIIX5 (X¼H2O,F,Cl,Br,I) (Table 5) with all Cr-X bond lengths taken to be the same as those for the

corresponding octahedral CrIIIX6 species
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(solvent in solutions or counter ions in the solid). To mimic this effect and study its
influence on the bonding and ligand field parameters we have chosen CrCl6

3� as an
example and used the conductor-like screening model (COSMO [34]) as imple-
mented in ADF [35]. Solvent radii of 1.75 and 0.97 Å have been selected for Cl and
Cr. The dielectric constant and the solvent radius " has been fixed at 78.4 and 1.4 Å,
respectively (pertaining to water as a solvent) [36].

Topological analyses of the electron density have been made using two home
made programs written in Matlab: one for Bader analysis (Emma1) and another
one (Emma2) for ELF calculations [37]. Both programs are interfaced with the
ADF program package and make use of the tape21 file and the ‘‘densf’’ utility
program, the latter providing the electron density on a grid.

To calculate the orbitally resolved Laplacian and ELF values we utilized the
high symmetry of the systems and used non-zero electronic ground state occupa-
tions, taking SCF Kohn-Sham orbitals of a given symmetry, while ignoring all
orbitals of a different symmetry (by setting zero occupation numbers in the input).

III. Results and Discussions

III.1. Complexes with CN¼6

III.1.1. Halide Complexes of CrIII, CoIII, MoIII, WIII

MO energy diagrams for the bare CrIIIX6
3� (d3, 4A2g ground state, X¼ F�,Cl�Br� –

Fig. 4) anions show the pattern for an octahedral complex, with bonding a1g,eg,t2g,
and t1u MOs that are dominated by ligand and antibonding MOs dominated by

Fig. 4. KS-MO energy (in eV) diagram for CrX6
3�(X¼ F,Cl,Br) charge uncompensated species;

contributions (in percentages) from the Cr 3d, 4s (in ‘‘( )’’ brackets) and 4p (in square ‘‘[ ]’’ brackets)

are given
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metal orbitals, i.e., typical for ligand to metal donor–acceptor bonds. It can be
qualitatively understood by the following expressions for the stabilization=
destabilization of the ligand=metal orbitals obtained from the angular overlap
model (Eq. (12a)) and the qualitative order for the magnitude of the AOM param-
eters as given by Eq. (12b).

�Eða1gÞ ¼ � 6e�ð4sÞ½ �
�Eðt1uÞ ¼ � 2e�ð4pÞ þ 4e�ð4pÞ½ �
�EðegÞ ¼ � 3e�ð3dÞ½ �
�Eðt2gÞ ¼ � 4e�ð3dÞ½ � ð12aÞ

e�ð4pÞ; e�ð4pÞ<e�ð4sÞ<e�ð3dÞ<e�ð3dÞ ð12bÞ
Mixing between metal and ligand orbitals is largest for the metal 3d- and much
smaller, but not negligible for the metal 4s- and 4p-orbitals. The participation of
the j4si and j4pi orbitals to bonding increases when going from F to Cl to Br
complexes, which is generally fulfilled also for the other coordination numbers with
the same ligands (see below). For CrF6

3� we notice the anomalous position of the
3a1g(4s) MO, being found below the 2t2g and 3eg MOs. This is clearly an artifact
connected with the choice of the orbital exponent and possibly the additional effect
of the uncompensated high negative charge of the anion. Going to Cl and Br,
the correct ordering 2t2g<3eg<3a1g is restored, but still, the position of 3a1g(4s)
is far too low. Thus, for free Cr3þ we calculate j4si as lying 11 eV above the j3di
orbitals. To compensate for the negative cluster charge, COSMO calculations for
CrX6

3�(X¼ F,Cl) have been performed. Their MO diagrams are compared with
those of the bare anions in Fig. 5. The contribution of a charge compensating solvent

Fig. 5. The effect of charge compensating solvent continuum on the KS-MO energies (right) in

comparison with those calculated using bare anions (left) for CrF6
3� and CrCl6

3� as studied using a

COSMO model with solvent parameters taken for water (see text)
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modifies considerably the orbital levels; the energy of the orbital 3a1g increases
significantly. Also, the 3eg-2t2g energy gap – which is a measure of the cubic ligand
field splitting 10Dq (Eq. (11)) increases and improves the agreement with experi-
ment (Table 2). A MO diagram (Fig. 6) for the series MCl6

3�(M¼Cr,Mo,W)
clearly shows variations of the bonding scheme across the series; the covalent
mixing between metal and ligand orbitals increases when going from Cr to Mo.
However, because of the increased relativistic effects observed for W, the transition
from MoIII to WIII does thus not show a monotonic variation.

Ligand field spectroscopy allows to characterise all these complexes as being
mainly ionic. Table 2 includes the results from an energy decomposition analysis,
with MIII and X6

6� as reference fragments. In choosing such fragments, we exclude
X–X interactions, thus focusing on pure TM–ligand bonding. To prepare such frag-
ments, a large amount of energy DEPrep is required. It includes the energies for the
M!M3þ þ 3e� and the X� !Xþ 1e ionization (a negative sign denotes the elec-
tronic affinity) and the additional repulsive energy needed to bring 6F� from infinity
to their actual positions in the complex. M3þ�X6

6� interaction energies DEint are
strongly negative and are dominated by the classical electrostatic term (DEElstat) as
expected. However, DEorb terms reflect the metal–ligand covalency as well as polar-
ization and they show that these effects are very significant. Their relative impor-
tance to the total attractive energy DEElstatþDEorb increases from F to Cl to Br: 20,

Table 2. Energy partitioning analysis of octahedral M(III) hexahalides (M¼Cr, X¼F,Cl,Br,I), MoCl6
3�, and WCl6

3� (from

ionic ðM3þ, X6
6�)c reference fragments, energies in eV)a, optimized M-X bond distances (R in Å)b, Mulliken charges (qM, qX),

and estimated and experimental values (in square brackets) for the ligand field splitting parameter 10Dq; percentages of DEElstat

and DEorb to the total attractive energy EElstatþEorb along with contributions from orbitals of different symmetry to Eorb are

given in parenthesis

MX6
3� CrF6

3� CrCl6
3� CrBr6

3� MoCl6
3� WCl6

3�

non-relat. relat. ZORA

R 1.964 2.397 2.562 2.511 2.510 2.545

qM 1.51 0.47 0.46 0.79 1.11 1.14

qx �0.75 �0.58 �0.58 �0.63 �0.69 �0.69

10Dqffi e(e)� e(t2) 1.58 [1.88] 1.34 [1.59] 1.19 [-] 1.72 [2.38] 1.96 [-] 1.81 [-]

DEPrep 93.20 83.13 71.47 77.74 77.34 78.85

DEint �124.13 �107.22 �100.52 �103.34 �101.36 �101.85

DEPauli 10.57 9.49 8.32 13.58 17.99 15.65

DEElstat �107.62 (80) �87.72 (75) �76.69 (70) �88.36 (76) �89.70 (75) �88.79 (76)

DEorb �27.07 (20) �29.00 (25) �32.15 (30) �28.57 (24) �29.65 (25) �28.71 (24)

DEorb(a1g) �1.77 (6) �1.97 (7) �2.25 (7) �1.62 (6) �1.73 (6) �2.82 (10)

DEorb(eg) �17.51 (65) �13.18 (45) �11.81 (37) �17.26 (60) �18.67 (63) �17.90 (62)

DEorb(t1g) �0.58 (2) �0.96 (3) �0.93 (3) �0.84 (3) �0.93 (3) �0.88 (3)

DEorb(t2g) �0.50 (2) �7.04 (24) �10.33 (32) �4.32 (15) �3.04 (10) �1.52 (5)

DEorb(t2u) �0.67 (2) �0.93 (3) �1.04 (3) �0.80 (3) �0.89 (3) �0.83 (3)

DEorb(t1u) �6.04 (22) �4.92 (17) �5.78 (18) �3.72 (13) �4.39 (15) �4.76 (16)

a Ms¼ 3=2 spin-unrestricted, basis: TZP, non-relativistic, frozen cores: Cr,Mo,W up to 3p,4p,4f, X: up to 1s(F), 2p(Cl), 3d(Br),

4d(I), PW91 functional; b Ms¼ 3=2 spin-unrestricted, LDA functional; c electronic configurations of the chosen reference

fragments are: M3þ(d3), X6
6�(a1g

2t1u
6eg

4a1g
2t1u

6t2g
6eg

4t2u
6t1u

6t1g
6)
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25, and 30% for the covalency and �27.07, �29.00 and �32.15 eV for the magni-
tude, respectively. This is consistent with the chemical intuition: i.e., increase of
the Cr–X covalency when going from F to Cl to Br. A closer look at the orbital
decomposition of DEorb, shows however, that contributions from j4si and j3di orbit-
als to � bonding (reflected by the a1g and eg energy terms), �þ � bonding (t1u), and
�-bonding (t2g) behave in a different way across the {F,Cl,Br} series. The eg and t1u

energies decrease, while the energies of t2g, and a1g increase in this order. Thus, the
trend observed in DEorb is the result of a subtle balance between contributions from
different bonding interactions. The behaviour of the eg and t2g orbitals also explains
the lowering of 10Dq when going from F to Br as a result of the decreasing eg-�
antibonding interaction. The account for solvation shows a strong stabilization of the
anion due to solute–solvent interactions which are larger for F�, than for Cl�.
However, only the metal (3d)-ligand �-bonding is stabilized by the solvent. Table
3, where the various contributions of the components obtained in the energy decom-
position are listed, clearly shows this. Contributions from orbitals other than from eg

are positive and do sum up to yield a small, yet, positive value of �DEorb.
The results from our ETS analysis are strongly supported by the Laplacian of

the electron density and the ELF functions. The plots of these functions obtained
from the total density do not show any accumulation of charge between the TM
and the ligand. This is seen from Fig. 6 where contour plots for (L) and ELF for
CrCl6

3� are displayed. The overall features of both plots reflect a mostly ionic
bond, with charge depletion between the metal and the ligand. It might still lead to
negative total energy densities at the bond critical points, however (see Section II
and Ref. [18]). The situation changes if one considers the Laplacian of the density
plot resolved into orbital contributions instead. Figures 7a and 7b illustrate this for
the �-bonds due to the a1g and the eg orbitals, respectively. Accumulation of elec-
tronic charge into regions of space between Cr and Cl is clearly stronger for eg and

Fig. 6. Contour plots for the Laplacian of the electron density (a) and electronic localization

function (b) pertaining to the total electron density of the bare CrCl6
3� complex in one of the planes

containing Cr3þ and four Cl� ligands; for contour values of the Laplacian see Fig. caption 2; the

overall pattern of the two plots display a mostly ionic bonding without charge concentration between

Cr and Cl; contour plots for solvated species are very similar reflecting a slight decrease of Cr–Cl

bond distances in the case of solvent
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weaker for a1g. Also the presence on lone pairs densities on the ligands in regions
of space opposite to the metal–ligand bond direction is obvious. These features
become even more pronounced when looking at the ELF plots. In Figs. 8a and 8b
we compare contours for ELF resolved into �(eg) and �(t2g), respectively. It fol-
lows, that localization valence domains are much more pronounced for the �-
density, when compared to the �-density. They are shifted from the midpoint of
the Cr–Cl bond vector toward the ligand in agreement with electronegativity

Table 3. Changes of DEorb and of its components of different symmetry going from bare CrF6
3� and

CrCl6
6� to solvated species (�DEorb); solute–solvent interaction energies for hydrated species (Esolv)

and changes of the values of 10Dq (�(10Dq), all energies in eV) and of the Cr–F and Cr–Cl optimized

bond lengths (�R, in Å) are also included

Changes ðCrX6
3�Þbare ! ðCrX6

3�Þsolv X¼ F Cl

�DEorb 0.259 0.294

�DEorb(a1g) 0.100 0.158

�DEorb(eg) �0.779 �0.797

�DEorb(t1g) 0.285 0.197

�DEorb(t2g) 0.072 �0.026

�DEorb(t2u) 0.281 0.224

�DEorb(t1u) 0.328 0.539

Esolv �21.520 �17.598

�(10Dq) 0.355 0.112

�R �0.06 �0.06

Fig. 7. Contour plots for the Laplacian of the electron density using � densities resolved into a1g

(a) and eg (b) symmetry components; plots are given for one of the planes containing Cr3þ and four

Cl� ligands and values of the Laplacian for the contour lines are the same as specified in Fig. caption

2; solid lines depict charge concentrations into bonding (between Cr and Cl) and lone-pair domains,

which are more pronounced for the eg electron density and less pronounced, yet clearly discernible

for the a1g electron density
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considerations. It should be pointed out, however, that Cr–Cl �-bonding is weak-
ened by admixture of the antibonding (2t2g)3 configuration. Figure 8c exhibits
this behavior in an impressive way: when constructing this plot, the three d-elec-
trons on the antibonding 2t2g MO have been removed and the picture reflects the
effect of the �-bonding electrons only. Finally, Fig. 8d illustrates that valence j4pi
orbitals can not be neglected in the discussion of the TM–ligand bond. This is in
agreement with the energy decomposition analysis, which tends to show that for
CrCl6

3�, j4pi orbitals seem to participate to bonding even stronger than j4si ones.

III.1.2. Aquo-Complexes of CrIII and CoIII

Water is considered to form highly anisotropic �-bonds with transition metals such
as TiIII(d1), VIII(d2), and MnIII(high-spin d4) as this is convincingly shown by EPR
and electronic Raman studies of the corresponding complexes [38–40]. However,
analysis of bonding in these complexes is complicated by the presence of Jahn-
Teller effect. The ground states are orbitally degenerate – 2T2(d1), 3T1(d2), and
4E(d4), respectively, and these studies mostly focused on this effect. To charac-
terize TM–H2O bonds, we have chosen CrðH2OÞ6

3þ
with jð2t2gÞ3; 4A2gi, and

CoðH2OÞ6
3þ

with jð2t2gÞ6;1 A1gi ground state as test cases. Energy decomposition
analyses have been carried out for a single H2O molecule interacting with a
MðH2OÞ5

3þ
(M¼Cr3þ,Co3þ) fragment (Table 4). In agreement with the lowering

of M–O bond length when going from left to right in the TM series, the total bond
energy of one H2O is larger for Co than for Cr. The bonding interaction is domi-
nated mostly by the electrostatic term DEElstat, but orbital interaction is found to
play an important role as well. Covalent bonding terms are calculated to be much
stronger for � than for � interactions, as expected. In agreement with the smaller
number of electrons occupying the antibonding 3d� orbitals (3 for Cr and 6 for Co)
and in spite of the lower bond distance for Co, �-bonding energy for Cr–OH2 is
found to be about two times larger than for Co–OH2. It is very surprising that

1
Fig. 8. The electronic localization function for CrCl6

3� in one of the planes containing Cr3þ and

four Cl� ligands constructed partitioning the electron density into eg, Cr(3d)–Cl � (a), t2g, Cr(3d)–Cl

� (b, c), and t1u, Cr(4p)–Cl �þ� (d) components; the contour plots for the t2g density (b, c) reflects

the weakening effect on the Cr–Cl bond caused by the three antibonding t2g(3d) electrons, which

have been accounted for in the plot (b) but ignored in the plot (c)

Fig. 9. Electronic localization function for CoðH2OÞ6
3þ

with a Th geometry (treated in its D2h

subgroup by ADF); contour plots are based on the total electron density in (a) and on its ag symmetry

component in (b); the irreducible representations (irreps) spanned by the valence orbitals of the

transition metals give rise to the following irreps of the D2h subgroup: eg(dz2, dx2–y2)! ag(dz2,

dx2–y2), tg(dxy, dxz, dyz)! b1g(dxy), b2g(dxz), b3g(dyz); ag(4s)! ag, tu(4px, 4py, 4pz)! b1u(4px),

b2u(4py), b3u(4px); thus the plot in (b) reflects the combination of bonding effects with participation

of the dz2, dx2–y2, and 4s valence orbitals of the TM

Fig. 11. Contour plots for the electron localization function of CrF4 with a Td geometry within a

plain containing a CrF2 molecular fragments constructed using the total electron density (a) and its

partitioning into a1 (b), t2 (c), and e (d) symmetries; the plots reflect the participation of the Cr 4s �

(a1), 3d and 4p �þ� (t2), and 3d � (e) to the Cr–F bonding in (b), (c), and (d), respectively
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�-anisotropy is not very pronounced, when comparing �-bonding energies within
(b2) and out of (b1) the TM–OH2 plane. Only for Cr(III) we do observe jDEorbðb1Þj>
jDEorbðb2Þj. Apparently, when considering bonding energies, �-anisotropy does not
show up in our analysis.

Using the energies of the Kohn-Sham orbitals with dominant metal character of
the fivefold coordinated fragments (see Fig. 3) we could estimate the corresponding
AOM-parameters which are listed in Table 4. The values obtained for e�s and e�c

are in agreement with the usual assumption made in LF theory, namely, that out-of-
plane �-antibonding is larger than in the TM–OH2 plane. Finally, the variation of
the respective e� and e� parameters do compensate in 10Dq leading to values of
this latter parameter which are quite close in magnitude for Cr and Co. Using the
same approach, i.e., considering CrX5

2�(X¼ F,Cl,Br) fragments it was possible to
calculate AOM parameters for Cr–X bonds. All these results are gathered in Table
5 and compared with values obtained from spectral data. There is a good overall
agreement between the two sets of data and this shows that DFT calculations do
well reproduce the trends observed experimentally.

Finally, the metal–ligand covalency is nicely expressed in the ELF function for
CoðH2OÞ6

3þ
(Fig. 9), both are derived from the total density (Fig. 9a) and from its

Table 4. Energy partitioning analysis for octahedral Cr(III) and Co(III) hexa-aquo complexes cal-

culated starting from MðH2OÞ5
2þ

(M¼CrIII, d3ðt2g
3Þ and CoIII, d6ðt2g

6Þ) complex units with the

octahedral bond distances and bond angles and adding a sixth H2O ligand to complete the coordination

sphere to the octahedron; deduced values of the AOM parameters e�, e�s(? H2O plane), and e�c(jj H2O

plane) are also given; energy values are listed in eVa, optimized Cr(Co)–OH2 bond distances (R) in Åb

MðH2OÞ6
3þ

M¼ CrIII CoIII

R 1.971 1.888

DEPauli 2.583 3.140

DEElstat �2.985 �3.481

DEorb �2.224 �2.521

DEint �2.627 �2.862

DEorb(a1) � �1.397 �2.005

DEorb(b1, xz, �?H2O-plane) �0.512 �0.245

DEorb(b2, yz, �jjH2O-plane) �0.306 �0.265

e� 1.277 1.331

e�s(? H2O plane) 0.448 0.614

e�c(jj H2O plane) 0.070 0.018

10Dq¼ 3e�� 2e�s� e�c 2.795 2.729

a Spin-restricted calculation, basis: TZP, non-relativistic, frozen cores: Cr(Co) up to 3p, O: up to 1s,

PW91 functional; b spin-restricted, LDA functional

Table 5. AOM parameters (in eV) from LFDFTanalysis and from experiment (in parenthesis, adopted

from Refs. [8, 9]) using optical data for hexacoordinate Cr(III) complexes

Ligand H2O F Cl Br I

e� 1.23 (0.93) 1.08 (0.92) 0.70 (0.68) 0.61 (0.61) 0.52 (0.53)

e� 0.26 (0.17) 0.37 (0.21) 0.18 (0.11) 0.15 (0.07) 0.11 (0.07)
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a1(�) components. The results clearly show the domination of the � over the �
interactions, in full support of our energy decomposition analysis (Table 4).

III.2. Neutral Complexes with CN¼4 – Tetrahedral Tetrahalides of CrIV

The KS–MO diagram for the CrX4 (X¼ F,Cl,Br,I) series with a jð2eÞ2 2A2i ground
state (Fig. 10) shows the pattern for an tetrahedral complex, with the bonding – 2t2,
2a1, 1e and the anitibonding 2e, 4t2, 3a1 (not shown) MOs dominated by ligand
(p, s) and metal (3d, 4s) orbitals, respectively. Thus, as in the complexes with
CN¼6 we have a typical pattern for a ligand-to-metal donor–acceptor bond. In
Fig. 10 we also display the fully occupied (by ligand electrons) strictly (t1) and
approximately (3t2) non-bonding MOs. The order of the MOs can qualitatively be
understood by the energy decrease=increase of ligand=metal centered orbitals
given by the AOM (Eq. (13)) and the inequalities following Eq. (12b).

�Eða1Þ ¼ � 4e�ð4sÞ½ �

�EðeÞ ¼ � 8

3
e�ð3dÞ

� �

�Eðt2Þ ¼ � 4

3
e�ð3dÞ þ 8

9
e�ð3dÞ

� �

�Eðt2Þ ¼ � 4

3
e�ð4pÞ þ 8

3
e�ð4pÞ

� �
ð13Þ

Fig. 10. KS-MO diagram for tetrahedral CrX4 (X¼ F,Cl,Br,I) molecules in their jð2eÞ2; 3A2i ground

state; percentages of contributions from the 3d, 4s, and 4p orbitals are indicated (without, with ‘‘( )’’,

and ‘‘[ ]’’ brackets, respectively)
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MO population analyses reflect a very pronounced covalency, which increases
when going from the fluoride to the iodide complex. In the same order the partic-
ipation of j4si to bonding increases; this is reflected by the contribution of the j4si
atomic orbital to the 2a1 MO and its energy lowering when going from CrF4 to
CrCl4. The plot of the ELF using the total electron density for CrF4 shows a mostly
ionic pattern. A similar plot is obtained for the Laplacian of the electron density
(Fig. 11a). However, a partitioning of the density into different symmetries shows,
for a1 and t2, localization of bonding pairs between Cr and F (Figs. 11b, 11c). In
spite of the fact that �- and �-bonding are not separable for Td it seems that
localization of valence domains is mainly due to �-overlap: the localization of
�-bonding pairs (e-symmetry) is not very pronounced (Fig. 11d). In order, not to
be biased by the choice of fragments, ETS energy decomposition analyses have
been performed using both neutral (CrþX4) and ionic (Cr4þ þ X4

4�) fragments
whose results are listed in Table 6. Looking at the jDEorbj term, we notice that it
decreases from the F to I when taking neutral fragments and it increases in that
direction for ionic fragments. It is only the latter case which is consistent with
the MO diagram (increase of covalency from F to I) as depicted in Fig. 10. Also
the electrostatic energy jDEElstatj behaves as expected: being largest for CrF4

and smallest for CrI4. The trend in the total attractive energy DEorb þ DEElstat is
finally the one which also determines the behavior of the total bonding energy –
decrease of jDEintj across the X¼ F to I series. It is the DEElstat term which
dominates this trend. Let us now concentrate on DEorb in case of ionic reference
fragments. Here the behavior is different to the octahedral complexes: i.e., all of
its components, jDEorbða1Þj, jDEorbðeÞj, and jDEorbðt2Þj, increase from F to I (vide
supra). This is not the case if one starts from neutral reference fragments. In the
latter case all these quantities decrease, at variance with the MO scheme (Fig. 10).
Focusing again on the jDEorbj term we observe that this contribution is dominated
by DEorb(e) and DEorb(t2), while DEorb(a1) should be much smaller. The � bonding
energy DEorb(e) is larger than DEorb(t2) (�þ �). This is different from what
one expects. Also, the DEorb(t1) term should exactly vanish from a bonding point
of view. Table 6 shows that this is not the case. As mentioned in Section II,
DEorb energies reflect not only a stabilization due to covalent bonding, but also
pure orbital polarization effects. To suppress the latter effects, we carried out a
single zeta (SZ) calculation for CrF4 whose results are listed in Table 6. Calcula-
tions of such a low quality should be avoided, as far as bonding energies are

1

Fig. 14. The electronic localization for CrCl2, partitioned into components for �(�g, �u) bonding in

(a) and �(�g, �u) bonding in (b)

Fig. 16. Electronic localization function for Re2Cl8
2� taken within a plane containing the Re–Re

bond and four Cl ligands belonging to the constituting ReCl4
� fragments; contour diagrams have

been plotted using the total density (a), the Re–Re �-density – a1(C4v) symmetry (b), the Re–Re

�-density – e(C4v) symmetry (c), and Re–Re �-density – b2 (C4v) symmetry (d); see Fig. 15 for

symmetry notations and a correlation diagram within the C4v subgroup, common for the dimer D4h

Re2Cl8
2� and the ReCl4

� fragment
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concerned. However, for the quantity DEorb they allow to differentiate between
covalency and polarization. Comparing jDEorbðeÞj with jDEorbðt2Þj we get the cor-
rect relations jDEorbðeÞj< jDEorbðt2Þj, as well as an exactly vanishing jDEorbðt1Þj
energy and most importantly, an increase of the jDEorbða1Þj energy. This is also the
trend expected for orbitals which are occupied (e) and empty (a1) on the Cr4þ

fragments.
Finally, we should note that the value of the spectroscopic 10Dq parameter,

given by the difference of energies between the antibonding orbitals 4t2� 2e, does
also follow the trend observed for the difference between the bonding energies
jDEorbðt2Þj � jDEorbðeÞj (Table 6) – both quantities decrease from left to right along
the CrF4, CrCl4, CrBr4, CrI4 series. This is similar to the results obtained for
octahedral complexes.

Table 6. Energy partitioning analysis of tetrahedral Cr(IV) tetrahalides (X¼ F,Cl,Br,I) using atomic (Cr, F4) or ionic (Cr4þ,

X4
4�) fragments (energy values in eV)a, optimized Cr–X bond distances (R in Å)b, Mulliken charges (qCr, qX), and estimated

values for ligand field splitting parameters 10Dq; percentages of EElstat and Eorb to total attractive energy EElstatþEorb as well as

contributions from orbitals of different symmetry to DEorb (DEorb¼DEorb(a1)þDEorb(e)þDEorb(t2)þDEorb(t1)) are given in

parenthesis

CrF4 CrCl4 CrBr4 CrI4

R 1.741 2.141 2.311 2.540

qCr 1.97 0.32 0.43 �0.70

qX �0.49 �0.08 �0.11 0.18

10Dqffi
e(4t2)� e(2e)

1.25 0.86 0.74 0.64

Fragments neutralc

Cr, F4

ionicd

Cr4þ, F4
4�

neutralc

Cr, Cl4

ionicd

Cr4þ, Cl4
4�

neutralc

Cr, Br4

ionicd

Cr4þ, Br4
4�

neutralc

Cr, I4

ionicd

Cr4þ, I4
4�

DEPrep – 115.06

[124.10]

– 111.15 – 109.45 – 108.31

DEint �29.17 �144.23

[�187.92]

�21.44 �132.59 �19.08 �128.53 �16.47 �124.78

DEPauli 33.06 19.52 [10.36] 23.99 15.99 19.98 13.01 15.53 10.93

DEElstat �13.91 (22) �113.38 (69)

[�133.33]

�13.28

(29)

�89.97

(60)

�12.47

(32)

�78.63

(56)

�10.84

(34)

�72.32

(53)

DEorb �48.32 (78) �50.37 (31)

[�64.96]

�32.16

(71)

�58.61

(40)

�26.60

(68)

�62.91

(44)

�21.15

(66)

�63.38

(47)

DEorb(a1) �0.03 (0) �2.34 (5)

[�6.90]

�0.06

(0)

�3.00

(5)

�0.09

(0)

�3.46

(5)

�0.26

(1)

�3.54

(6)

DEorb(e) �1.56 (3) �32.53 (64)

[�20.74]

�1.05

(3)

�35.96

(61)

�0.58

(2)

�37.23

(59)

�0.28

(1)

�36.50

(58)

DEorb(t2) �46.53 (96) �13.41 (27)

[�37.32]

�30.97

(96)

�16.99

(29)

�25.87

(97)

�19.36

(31)

�20.62

(97)

�21.33

(34)

DEorb(t1) �0.20 (0) �2.08 [0.00] (4) �0.07 (0) �2.66 (4) �0.05 (0) �2.86 (4) 0.00 (0) �2.03 (3)

a Ms¼ 1 spin-unrestricted, basis: TZP, non-relativistic, frozen cores: Cr up to 3p, X: up to 1s(F), 2p(Cl), 3d(Br), 4d(I),

PW91 functional, calculation with single zeta (SZ) – basis for CrF4 using ionic fragments is given in square brackets; b Ms¼ 1

spin-unrestricted, LDA functional; c Cr(d6), F4(a1
2t2

6a1
2t2

6e4t1
6t2

2), spin-restricted reference fragments; d Cr(d2), F4
4�

(a1
2t2

6a1
2t2

6e4t1
6t2

6), spin-restricted reference fragments
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III.3. CrX2 Molecules (X¼F,Cl,Br,I)

For linearly coordinated Cr(II) which is a d4 ion, the AOM predicts a splitting
of the d-orbitals into �g(dz2) having the highest energy, followed by �g(dxz,yz)
the two orbitals being placed by the AOM as 2e� and 2e� above �g(dxy,dx2-y2).
The latter orbital has no ligand counterparts and is thus purely non-bonding.
In contradiction to this AOM prediction, the KS–MO diagram (Fig. 12) shows
that the 3d� MO level is rather low lying because of the 3d–4s interaction, while
3d� is found to be the topmost orbital: a consequence of the pronounced �-donor
effect of the halide ligand. The metal–ligand bond-distances, decrease when low-
ering the coordination number (CN), as can be seen from a comparison with the
four-fold and six-fold coordinated complexes with the same ligands. The extent of
3d–4s mixing increases from CrF2 to CrI2, i.e., with increasing covalency, but
the overall spread of MO energies decreases indicating a lowering of the bond
strength along the same sequence. In spite of the higher degree of covalency
for the CN¼2 versus the CN¼4 and CN¼6 species, we find, both for ELF
(for CrCl2) and for the Laplacian of the electron density (for CrI2), a mainly
ionic bonding. In Fig. 13 we compare the two plots using the total density: no
charge concentration between the Cr and X nuclei could be located. However,
partitioning of the density into contributions due to � and � bonding (Figs. 14a,

Fig. 12. KS-MO diagram for linear CrX2 (X¼ F,Cl,Br,I) molecules in their equilibrium geometries

and 5�g ground state; percentages of contributions from Cr 3d, 4s, and 4p orbitals are included

(without brackets for 3d, with ‘‘( )’’ brackets for 4s, and with ‘‘[ ]’’ brackets for 4p
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14b), impressively reflects a localization of valence domains. As one can imme-
diately see, �-bonding makes the main contribution, localization of spin-density
due to �-bonding domains being much less pronounced. The latter can be easily
understood in terms of the 5�g ground state with four unpaired electrons. Three of
them occupy the non-bonding 3�g and 1�g orbitals and one is placed into the
strongly antibonding 2�g orbitals. Figure 14a nicely illustrates the effect of hybrid-
ization for strengthening of the metal–ligand bond as reflected by the in-phase
h1 hybrid, and the diminishing effect of the antibonding electron pair in the
out-of-phase, h2 hybrid (Eq. (14)), thus converting the latter into a nearly non-
bonding lone-pair.

h1 ¼ 1ffiffiffi
2

p ð3dz2 þ 4sÞ

h2 ¼ 1ffiffiffi
2

p ð3dz2 � 4sÞ ð14Þ

The ETS energy decomposition analysis brings a further support to these
results. In Table 7, we list the results from such analysis, where both, neutral
and ionic reference fragments have been taken into account. The data clearly show
that it is the ionic description which yields a picture that is consistent with respect
to both the KS–MOs and ELF analysis. That is, the dominance of � interaction as
well as the nearly vanishing influence of � metal–ligand interactions. We notice the
large negative value of DEorb(�g) emerging from an ionic description. This is found
to be mostly an orbital polarization effect (vide supra). Thus, reducing the quality
of the basis from TZP to SZ leads to a distinct lowering of this energy at the
expense of accuracy of the description of the total bonding (SZ, CrF2,

Fig. 13. Contour plots based on the total density for the electron localization function for CrCl2 in

(a) and Laplacian of the electron density for CrI2 in (b); the value of the Laplacian at the bond critical

point (Lbcp) for CrI2 is given; the plots reflect overall ionic bonding
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DEorb(�g)¼ �1.60 eV). An extensive DFT study of the structure and bonding in
transition metal dihalides has been published by Wang and Schwarz and the reader
is referred to this work for more details [41]. The comparison of calculated bond
lengths, vibrational frequencies, and dissociation energies with experiment in
Ref. [41] demonstrates the ability of the DFT method to correctly describe the
electronic structure and bonding of these complexes. Our calculations are widely in
agreement with all these studies. A mostly ionic bonding in TM dihalides MX2

(M¼Ca to Zn; X¼F,Cl,Br) has also been reported based on a topological analysis
of ELF. Likewise, bifurcation diagrams reported from a study of VOþ

x and VOx

(x¼ 1–4) clusters [23] invariably show a mostly ionic V–O bonding in all these
species (oxidation states of V – 5(d0) and 4(d1)). Thus the tree diagram of ELF for
VOþ

2 with a bend geometry in its 1A1 ground state shows core=valence bifurcations
into oxygen core domain and a composite valence domain at ELF¼ 0.20. At a
threshold value of ELF¼ 0.40, the composite valence domain is further split into a
vanadium core domain and two mono synaptic oxygen domains, the latter two
reflecting oxygen lone pairs. Very interestingly, the bifurcation diagram of VO2

with a similar bend geometry shows a vanadium valence domain. Being monosy-
naptic, the latter reflects the single d-electron in the d-subshell of V. Without
exceptions, no bi-synaptic (V–O) valence domains could be found in all these

Table 7. Energy partitioning analysis of tetrahedral Cr(II) dihalides (X¼ F,Cl,Br,I) using atomic (Cr, F) or ionic (Cr2þ, X�)

fragments (energy values in eV)a, optimized Cr–X bond distances (R in Å)b, Mulliken charges (qCr, qX), and estimated values for

the ligand field splitting parameters D1¼ �(dz2)��(dxz,yz), D2¼ �(dz2)� �(dx2–y2,xy); percentages of EElstat and Eorb to total

attractive energy DEElstatþDEorb are given in parenthesis

CrF2 CrCl2 CrBr2 CrI2

R 1.806 2.208 2.375 2.609

qCr 1.12 0.59 0.62 0.09

qX �0.56 �0.29 �0.31 �0.05

D1¼ �(dz2)� �(dxz,yz) �0.37 �0.34 �0.32 �0.32

D2¼ �(dz2)

� �(dx2–y2,xy)

0.45 0.06 �0.01 �0.10

Fragments atomic ionic atomic ionic atomic ionic atomic ionic

DEPrep – 15.02 – 15.27 – 15.56 – 15.93

DEint �16.98 �32.00 �13.52 �28.79 �12.43 �27.99 �11.09 �27.02

DEPauli 16.58 11.74 15.08 8.89 13.78 7.53 12.39 6.10

DEElstat �6.28

(19)

�31.59

(72)

�6.91

(24)

�25.72

(68)

�6.89

(26)

�23.65

(67)

�6.58

(28)

�21.25

(64)

DEorb �27.29

(81)

�12.15

(28)

�21.69

(76)

�11.96

(32)

�19.32

(74)

�11.87

(33)

�16.91

(72)

�11.87

(36)

DEorb(�g) �8.85 �6.25 �7.20 �5.80 �6.19 �5.61 �5.34 �5.60

DEorb(�u) �3.82 �0.31 �3.18 �0.51 �3.00 �0.66 �2.78 �0.72

DEorb(�g) �5.66 �0.37 �3.73 0.30 �2.93 0.58 �2.06 0.74

DEorb(�u) �7.38 �0.54 �5.97 �0.75 �5.53 �0.81 �5.03 �0.71

DEorb(�g) �1.61 �4.68 �1.65 �5.21 �1.68 �5.38 �1.72 �5.57

a Ms¼ 2 spin-unrestricted, basis: TZP, non-relativistic, frozen cores: Cr up to 3p, X: up to 1s(F), 2p(Cl), 3d(Br), 4d(I), PW91

functional; b Ms¼ 2 spin-unrestricted, LDA functional
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examples, demonstrating once more the rather high ionicity of the V–O bond,
which is found to be also independent on the coordination number.

III.4. Metal–Ligand and Metal–Metal Bonding in Re2Cl8
2�

The discovery of a strong Re–Re bond in the Re2Cl8
2� anion in 1965 [42], termed

quadruple bond, did open a new area in inorganic chemistry. Moreover, it contrib-
uted to initiate studies which helped, to understand and to validate our knowledge
about the chemical bond, based on the classical paper by Heitler-London [43] and
on the Coulson-Fischer treatment of the two-electron bond in the H2 molecule [44].
An excellent review of all developments covering both experiment and theory on
the � bond in the Re2

6þ and Mo2
4þ cores along with reference to original work has

been published recently [45].
To analyze the Re–Re bond in Re2Cl8

2� it is reasonable to start from the two
square pyramidal ReCl4

2� fragments. For this coordination, the j5di orbitals of Re
are split into 6a1(dz2), 2b2(dxy), 6e(dxz,yz), and 4b1(dx2-y2) species whose energies
and compositions are depicted in Fig. 15 (left). A qualitative understanding of this
splitting pattern is illustrated using AOM expressions (Fig. 3). The dz2 orbital is
antibonding, but is largely stabilized by the 5d–6s mixing which pushes it down,
thus making it lowest in energy. This mixing is such, that it increases the lobes into
the axial direction and thus enhances the Re–Re overlap in the dimer. It follows
that the Re–Cl bonding in the ReCl4

� fragment, which leads to 5d–6s hybridization
has an indirect enforcing effect on the Re–Re �-bond. Thus, considerations of a
naked Re2

6þ cluster leads to a much weaker splitting of the �-orbitals (Fig. 15 right
hand side). The energies of the 6e and 2b2 orbitals of the ReCl4

� unit indicate a
strong Re–Cl �-bonding interaction (out-of-plane and in-plane, for 6e and 2b2,
respectively) and are calculated at almost the same energy. They give rise to
Re–Re � and � bonds, respectively. All four orbitals, 6a1, 2b2, and 6e are singly
occupied in ReCl4

� and give rise to four bonds between the two ReCl4
� – units:

one �, two �, and one � bond. A rough measure for the strength of these bonds is the
spitting of the a1(9a1, 12a1), e(11e, 12e), and b2(3b2, 4b2) orbitals, which are
calculated to be 5.42, 3.58, 0.70 (Fig. 15), respectively, thus reflecting a decrease
of bond strength from � to � to �. This is clearly manifested by the ELF plots for
these pathways as is nicely seen in Fig. 16. Thus, while the plot in Fig. 16a does not
show any indication of accumulation of electron charge between the Re nuclei, the
symmetry partitioned ELF plots (Figs. 16b, 16c) nicely reflect this. The spectacular
feature of these plots is the �-bond pathway which shows a valence domain
between the Re nuclei but not only. Indeed, the plot for � symmetry reflects a
much weaker yet non-negligible bonding effect, while the one for � does not dis-
play any bonding features. Apparently, the �-bonding in Re2Cl8

2� can be regarded
as a weak bond which might rather be considered as a strong antiferromagnetic
coupling between the unpaired spins of �-symmetry (see below). This interaction
can be fully destroyed when going from the eclipsed (D4h) to the staggered (D4d)
conformation as is shown by the KS–MO diagram (Fig. 17). For this geometry, the
�-orbitals are rotated by a 45� with respect to each other, leading to strict ortho-
gonality and to ferromagnetism. This could be achieved by chemical manipulations
[45]. The ETS energy decomposition analysis lends support to this interpretation
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based on MO analysis and ELF plots (Table 8). The absence of �-bonds in the D4d

geometry also explains the larger stability (by �0.65 eV for DEint) of the eclipsed
compared to the staggered form. The DEint energy change when going from the D4h

to the D4d complex is a result of the balance between the DEPauli term (which is in
favor for the D4d geometry, �DEPauli ¼ � 0.59 eV) and DEorb (�DEorb¼ 1.02), and
to a lesser extend to the DEElstat term (�DEElstat¼ 0.23 eV, i.e., both are in favor of
the D4h geometry). It is interesting to note that all contributions to DEorb become
less negative when going from D4h to D4d. However, reduction in bond strength in
this direction is dominated by � [�DEorb(�)¼ 0.73 eV], followed by � and then by �
[�DEorb(�)¼ 0.19 and �DEorb(�)¼ 0.11 eV].

The metal–metal interactions in complexes M2(formamidinate)4 including var-
ious metals (M¼Nb, Mo, Tc, Ru, Rh, and Pd) with different d-electron counts and
M–M bond orders have been studied in terms of the topological analysis of the
electron density and ELF by Silvi et al. [46]. The AIM analysis of the calculated

Fig. 15. Kohn-Sham MO energy diagram for Re2Cl8
2� and its correlation with the KS-MO levels

dominated by 5d orbitals and their percentages of the constituting ReCl4
� (C4v symmetry) fragment;

KS-MO energy diagrams for the Re2
6þ, Re2

2þ, and Re2 dimers are included; for the sake of a better

comparison, KS-MO energies for each cluster have been plotted taking their baricenter energy as a

reference; electronic ground state notations refer to C4v (common symmetry for ReCl4
� and

Re2Cl8
2�) and D1h (for Re2

6þ, Re2
2þ, Re2); the shift of the KS-MO with dominating contribution

of 6s toward lower energies from Re2
6þ, Re2

2þ, and Re2 is indicated; the high energy position of this

orbital for Re2Cl8
2� and ReCl4

� is found to be outside the plotted energy range and is not shown;

electronic configurations of the Re fragments and the electronic states used for the DFT calculations

on the dimers are given at bottom

Chemical Bonding Based on DFT 953



electron density show low �(r) values at the metal–metal bond critical points and
therefore turn out to be not very informative. Using ELF instead, four bisynaptic
metal–metal valence basins, V(M–M) could be located for the Mo and Nb dimers,
reflecting a bonding situation, similar to that for Re2Cl8

2�. Only one metal–metal
valence basin has been found for the Ru and Rh complexes, while no disynaptic
basins are obtained for the Tc and Pd systems. In all cases, the V(M–M) valence
basins are not the dominant features of the interactions due to their low population
values with main contributions from the metal ‘‘4d’’ electrons, as expected. How-
ever, the ‘‘4d’’ electrons have been found to contribute mostly to the metal core
basins. As the most important feature of the metal–metal bond in these systems it

Fig. 17. Energies of metal centered 5d KS-MOs for Re2Cl8
2� in its more stable, eclipsed (D4h), and

in its less stable, staggered (D4d) conformations and the correlation between them; the suppression of

the Re–Re �-bond when going from the D4h to the D4d geometry and the assignment of the MOs to

�, � and � bonding (�, �, and �) and antibonding (��, ��, and ��) are shown

Table 8. The unique bonding situation in Re2Cl8
2� with a bonding energy partitioned with respect

to two non-interacting ReCl4
1� sub-units in its eclipsed (ideal for �-bonding) and its staggered

(�-bonding is abolished) conformationsa

DEPauli DEElstat DEorb DEint DEorb(a1) DEorb(a2) DEorb(b1) DEorb(b2) DEorb(e)

eclipsedb

25.46 �10.31 �20.79 �5.64 �10.63 0.00 �0.07 �0.80 �9.29

staggeredc

24.87 �10.08 �19.77 �4.99 �10.52 0.00 �0.08 �0.08 �9.10

a Scalar relativistic ZORA calculations; b a1
2ð�Þeð�Þ4b2ð�Þ2

– singlet ground state;
c a1

2ð�Þeð�Þ4b2ð�Þb1ð�Þ – triplet ground state, C4v symmetry notations
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was noted the very high metal–metal core and the AIM atomic covariancies –
B(M, M) and �c(�), respectively. Both reflect a rather large electronic charge fluc-
tuation between the two metallic cores. These have been interpreted in terms of
simple resonance arguments [46]. Except for the Rh compound, a nice correlation
between B(M, M) and the metal–metal distances has been found.

Yet, another possibility to analyze Re–Re �, �, and � bonds within DFT is
to apply to each of them separately the two-center-two-electron bond model. For
� and � this can easily be done, because for each type of bonding, there are
two MOs and two available electrons in D4h symmetry. This is similar to a dis-
cussion of bonding in these systems in which �-electrons are being considered as
decoupled from the �- and the �-electrons (Bursten and Clayton [47]). Within
this approximation, an analysis along the lines of a homonuclear diatomic MO
problem for each of the two bonding modes separately becomes possible. For
�-bonds, there are 4 electrons and 4 orbitals which makes the analysis cumber-
some. However, also in this case, an approximate treatment can be given, restrict-
ing the consideration to two electrons distributed over only two orbitals – bonding
and antibonding, each of them transforming as one of the components of the
doubly degenerate orbital e.

We present here a new bond analysis using the following procedure. Let us
assume that two semi-occupied orbitals dl1 and dl2 located on both symmetry
equivalent fragments couple to yield an in-phase (a) and an out-of-phase (b) MO
(Eq. (15)) where a and b belong to two different irreps.

a ¼ 1ffiffiffi
2

p dl1þdl2ð Þ

b ¼ 1ffiffiffi
2

p dl1�dl2ð Þ ð15Þ

Moreover we neglect here the overlap between dl1 and dl2. Six micro-states or
Single Determinants (SD) are possible. Two are doubly occupied jaþa�j, jbþb�j
and four are singly occupied jaþb�j, jaþbþj, ja�bþj, ja�b�j. The doubly occupied
SD have a	 a¼ b	 b¼A spatial symmetry, correspond to closed shells, and are
spin singlets. The SD based on singly occupied spinorbitals have a	 b¼B
spacial symmetry and correspond to a singlet and to a triplet. The two SD with
MS¼ 0: jaþb�j and ja�bþj, belong both to a singlet and to a triplet. The energies of
all these determinants can be calculated from DFT. Let us denote their energies by
Eq. (16).

E1 ¼ E aþa�j jð Þ; E2 ¼ E bþb�j jð Þ; E3 ¼ E aþbþj jð Þ ¼ E a�b�j jð Þ;
E4 ¼ E aþb�j jð Þ ¼ E a�bþj jð Þ ð16Þ

We note that the difference E4�E3 equals the exchange integral [abjab] which is
also the quantity accounting for the mixing (1:1 in the limit of a full localization)
between the jaþa�j and jbþb�j microstates. This leads to the secular Eq. (17)
which after diagonalization yields the eigenvalues E� and Eþ and the energy
separation between the lowest singlet state and the triplet E� – E3, referred to as
the singlet-triplet splitting. The latter is identical to the exchange integral in
magnetism. It is a good measure for the covalence stabilization of a bonding
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electron pair with respect to a non-bonding triplet pair. When compared in the
limit of complete dissociation these quantities yield the total bonding energy
(Eq. (17)).

E1 ðE4 � E3Þ
ðE4 � E3Þ E2

� �
ð17Þ

Let us now consider the formation of bonding in terms of a localized model for
bonding. Within such a model (Anderson [48]), dl1 and dl2 are singly occupied in
the ground state for separate fragments giving rise to a triplet and to a singlet with
wavefunctions  T and  S (Eqs. (18) and (19)). There are two further singlet states
 CT

S and  
0 CT
S arising when either of the two magnetic electrons is transferred to the

other magnetic orbital (SOMO) (Eqs. (18) and (19)).  S lies by 2K12 at higher
energy than  T.

 T ¼ dlþ1 dlþ2
		 		; dl�1 dl�2

		 		; 1ffiffiffi
2

p dlþ1 dl�2
		 		þ dl�1 dlþ2

		 		
 �
ð18Þ

 S ¼ 1ffiffiffi
2

p dlþ1 dl�2
		 		� dl�1 dlþ2

		 		
 �
;  CT

S ¼ 1ffiffiffi
2

p dlþ1 dl�1
		 		þ dlþ2 dl�2

		 		
 �
;

 
0 CT
S ¼ 1ffiffiffi

2
p dlþ1 dl�1

		 		� dlþ2 dl�2
		 		
 �

ð19Þ

We take the energy of the latter state as reference {E( T)¼ 0}. K12 is the
classical Heisenberg exchange integral (Eq. (20)) which is always positive.

K12 ¼
ðð

dl1 1ð Þ�dl2 1ð Þ 1

r12

dl1 2ð Þ�dl2 2ð ÞdV1dV2 ¼ ½dl1dl2jdl1dl2� ð20Þ

It reflects the exchange stabilization of the triplet over the singlet due to gain in
potential energy connected with the spatial extension of the Fermi (exchange) hole
(potential exchange). The  S two-electron wave-function can mix with the
charge transfer state  S

CT. Its energy, denoted with U equals the difference between
the Coulomb repulsions of two electrons on the same center, i.e.: j dlþ1 dl�1 j or
j dlþ2 dl�2 j (U11¼ [dl1dl1jdl1dl1]¼U22¼ [dl2dl2jdl2dl2]) and when they are located
on different centers (the notation U12¼ [dl1dl1jdl2dl2] applies). The energy separa-
tion between the dl1

2 (or dl2
2) excited state and the dl1

1dl2
1 ground state config-

uration is given by Eq. (21).

U ¼ U11 � U12 ð21Þ

U is also a positive quantity. The interaction matrix element between  S and  S
CT

(Eq. (22)) reflects the delocalization of the bonding electrons due to orbital overlap.
The quantity t12 ¼ hdl1jhjdl2i is being referred to as the transfer (hopping) integral
between the two sites.

h SjHj CT
S i ¼ 2T12 ¼ 2ðt12 þ ½dl1dl1jdl1dl2�Þ ð22Þ

Calculations show that T12¼ t12 in a very good approximation, differences being
generally less than 0.002 eV. This term tends to lower the singlet-over the triplet-
energy and is intrinsically connected with the gain of kinetic energy (kinetic
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exchange). The interaction matrix (Eq. (23)) describes the combined effect of these
two opposite interactions.

 S  CT
S

2K12 2T12

2T12 U þ 2K12

� � ð23Þ

As has been pointed out already in Ref. [49], the parameters K12, U, and T12 can be
expressed in terms of the Coulomb integrals (Jaa, Jbb, and Jab), the exchange
integral Kab, and of "(b)� "(a), the KS-orbital energy difference. Eqs. (24)–(26)
below, resume these relations.

K12 ¼ 1

4
Jaa þ Jbb � 2Jabð Þ ¼ 1

4
E1 þ E2 � 2E4ð Þ ð24Þ

U ¼ U11 � U12 ¼ 2Kab ¼ 2 E4 � E3ð Þ ð25Þ

T12 ffi 1

2
"ðaÞ � "ðbÞf g ¼ 1

4
ðE2 � E1Þ ð26Þ

We like to point out that these expressions are furthermore related with the
energies of the single determinants jaþa�j, jbþb�j, jaþbþj, jaþb�j (i.e., E1, E2,
E3, and E4, respectively). In deriving these expressions we implicitly made use
of Eqs. (27)–(30).

E1 ¼ 2"ðaÞ þ Jaa ð27Þ

E2 ¼ 2"ðbÞ þ Jbb ð28Þ

E3 ¼ "ðaÞ þ "ðbÞ þ Jab � Kab ð29Þ

E4 ¼ "ðaÞ þ "ðbÞ þ Jab ð30Þ
Thus, Eqs. (24)–(26) allow us to obtain K12, U, and T12 directly from DFT
enabling an analysis of the chemical bond. We get therefore a bonding model in
terms of localized orbitals, whose parameters are readily obtained from the DFT
SD energies E1, E2, E3, and E4 of the dinuclear complex. It is remarkable that the
same model can be applied with success to magnetic exchange coupling [50], thus,
making it possible to consider magnetic and bonding phenomena on the same
footing. In fact, there is no fundamental difference between antiferromagnetism
and bonding.

In Table 9 we list the energies of E1, E2, E3, E4, the corresponding eigenvalues
E�, Eþ, ET, ES, and the singlet triplet separation J12 obtained from DFT calcula-
tions. Re–Re bond energies decrease from � to � to � following the lines of the MO
and the ETS analysis. It is interesting to note that the �"(�) (�¼ �, �, �) splittings
of the KS–MO energies and J12(�) are very close in magnitude and nearly equal to
the values of the hopping integral t12. This reflects the common covalent origin of
these parameters. At the same time, DEorb(�) deduced from the ETS analysis are
larger than J12(�) and �"(�) (Table 9). Possibly, polarization effects contribute to
this difference (see above). The parameter K12 is just the ferromagnetic exchange
integral which may become operational in the limit of zero overlap. It leads to a
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triplet (3A2) ground state in the staggered (D4d) conformation of Re2Cl8
2� where �

bonding is fully suppressed.

IV. Discussion and Conclusions

A chemist considers a molecule as a system of atoms and bonds, a quantum
chemist treats it as a system of interacting electrons and nuclei. A possible bridge
between these two approaches is the LCAO method which is a useful tool for
calculation and interpretation. However, a rigorous quantum theory of atomic
interactions is still lacking. Mayer’s ‘‘Chemical’’ Hamiltonian [51–53] offers a
deductive approach which allows a priori of making an analysis rather than
a posteriori (after having calculated the wavefunction). However, an application
of this approach to open shell systems is still lacking. In this study, we applied
the ETS method to TM complexes with open d-shells and compared results from
analysis of the electron density using the Laplacian of the electron density and the
electron localization function. From this comparison we can conclude, that starting
from ionic bonding and introducing a correction for covalency (charge transfer)
and polarization yields a consistent description, thus allowing to regard the TM–
ligand bond as a donor–acceptor relationship. The classical coordination bond is
relatively ionic and therefore electronic properties are focused mostly on the dn-
configuration of the TM. Such a concept is highly supported by the spectroscopic

Table 9. Singlet versus triplet ground state stabilizations in eclipsed Re2Cl8
2� based on a two-

electron-two-center bond model within the single determinant DFT approach for �, �, and �

bondsa

�¼ � � �

E1(aþa�) �51.543 (�49.278) �51.543 (�49.278) �51.543 (�49.278)

E2(bþb�) �40.115 (�38.893) �44.029 (�42.467) �50.105 (�47.966)

E3(aþbþ) �46.287 (�44.513) �48.076 (�46.156) �51.148 (�48.919)

E4(aþb�) �46.091 (�44.285) �47.906 (�46.008) �50.833 (�48.631)

E�
1(��) �51.546 (�49.283) �51.546 (�49.281) �51.609 (�49.338)

Eþ
1(����) �40.112 (�38.888) �44.025 (�42.464) �50.039 (�47.906)

ET
3(���) �46.287 (�44.513) �48.076 (�46.156) �51.148 (�48.919)

ES
1(���) �45.896 (�44.057) �47.736 (�45.860) �50.518 (�48.343)

J12 ¼ E� � ET �5.259 (�4.769) �3.470 (�3.125) �0.461 (�0.419)

�"(�) �5.41 �3.58 �0.704

DEorb(�) �10.633 �9.287 �0.802

K12 0.131 (0.100) 0.060 (0.068) 0.0045 (0.0045)

t12 5.714 (5.192) 3.757 (3.406) 0.719 (0.656)

U 0.391 (0.456) 0.340 (0.296) 0.630 (0.576)

a Scalar relativistic (non-relativistic, in parenthesis) spin-unrestricted ZORA calculations in D4h

symmetry with the following configurations for the Re d-orbitals (see Fig. 17) for �, � and � bonding:

(aþa�)¼ 6a1g
26e1u

42b2g
2; (bþb�)¼ 6a2u

26e1u
42b2g

2, 6a1g
26e1u

26eg
2b2g

2, 6a1g
26e1u

42b1u
2; (aþbþ and

aþb�)¼ 6a1g
16a2u

16e1u
42b2g

2; 6a1g
26e1u

36eg
12b2

2g; 6a1g
26e1u

42b2g
12b1u

1 (a, b orbitals under consid-

eration are underlined); values of the transfer (hopping) integral t12, the Heisenberg exchange integral

(K12), and the effective transfer energy (U) are also included; Re–Re (2.236 Å) and Re–Cl (2.331 Å)

bond distances are obtained from LDA-DFT geometry optimizations
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behavior, which shows d–d transitions and CT-transition far apart, allowing to
define what is called to be a typical Werner type complex. Electronic absorption
and emission spectra and ESR and their interpretations using ligand field theory
have been used to characterize electronically such compounds. These studies
repeatedly demonstrate that ionic like dn-configurations and the many electron
states originating for them are well defined. In this sense this class of compounds
differs from organometallic ones, where bonding is more covalent and electronic
effects extend beyond the dn manifold to include metal s and p valence orbitals as
well.

The rather ionic character of the TM–ligand bond and the much smaller radius
of the 3d compared to the 4s orbital has led to suggest that the TM–ligand bond is
mainly governed by 4s and 4p-orbitals, whereas the 3d-electrons are inactive being
mainly spectators (or spectroscopic probes) for the chemical bond [54]. Based on
our analysis we cannot confirm this point. We find, that in Werner type complexes,
the 3d electrons play a dominant role in bonding.

The bonding concept emerging from our analysis is illustrated in Fig. 18 taking
CrF4 as an example. Starting from neutral atoms, a large amount of preparation
energy DEprep is needed to produce ionic fragments, in this case we consider Cr4þ

Fig. 18. The concept of ligand-to-metal donor–acceptor bonding energy for Werner-type complexes

of transition metals with open d-shells and its components within the ETS energy decomposition

scheme, illustrated for CrF4
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and F4
4� at infinite distances. Bringing these moieties from infinity to their actual

positions in the complex needs some additional energy due to Pauli (exchange)
repulsion between closed shells denoted as, DEP. The sum of these two
terms defines the repulsive contribution to the bonding energy. The latter becomes
largely overcompensated by the attractive part of the bonding energy. It consists
of two components. The largest term, DEElstat, is the electrostatic (Coulomb)
attraction between ions of oppositely charged ions. This is the molecular analogue
of the Madelung energy in ionic crystals. Another stabilizing term, which is also
chemically the most interesting one, is the orbital relaxation energy, DEorb. It con-
sists of electron charge-transfer between ions and additionally, of orbital polariza-
tion of the ions due to the electrostatic field of the neighboring orbitals. The DEorb

energy can be further decomposed into symmetry species. Their variation within
classes of closely related molecules is chemically significant and bears power of
interpretation.

The rather ionic nature of the TM–ligand bond in Werner type complexes also
derives from analysis based on natural bond orbitals and their extensions, i.e., the
localized bond concept [55]. When combined with valence bond theory, this
approach allows to locate most probable Lewis structures. Thus, sdn�1 hybride
orbitals for a MLn complex along with natural hybrid orbitals on the ligands yield
a rather accurate approximation of valence electron density in many cases (up to
97–99% accuracy [55]). They show that the relative participation of j4si TM
orbitals to the TM–ligand bond increases with decreasing coordination number.
This trend is very similar to, what we obtain presently: the inclusion of j4si yields
stronger bonds, when going, say from CrCl6

3� to CrCl4 to CrCl2. Moreover, ionic
resonance structures (such as WF3

3þðF�Þ3, W¼F double bonds, and presumably
ClCl3(Cl�)3, Cr–Cl single bonds) yield a high or dominating weight in the total
wavefunction. Also, the existence and geometries, say of CrX4 (X¼ F,Cl,Br,I)
are in agreement with electron counts (4 sd3 hybride functions plus 2 unpaired
electrons¼ 6). The NBO approach is beyond the scope of the present review, see
Refs. [56–58].

The ETS method has been found to be a useful tool in analyzing the TM-bond.
However, results and interpretations are biased by the choice of reference frag-
ments which might differ from case to case. Thus, other methods, based on analysis
of the electron density of the considered molecule can provide information for the
bonding ‘‘as it is’’. Thus, the quantum theory of atoms and molecules and the
electronic localization function are valuable extensions and can assist interpreta-
tions by the ETS method. We have found that the former two approaches gain
insight power for complexes of high symmetry when decomposition of the electron
density into different irreducible representations of the molecular point group is
possible. Using such symmetry resolved Laplacians and ELF functions enabled us
to show that ionic bonding in Werner type TM complexes is considerably modified
by covalency, mostly of �-type, but turns out to be mainly ionic when looking at
the total electron density.

A more critical remark should be made when considering the quantitative
aspects of Morokuma and the closely related ETS methods. The former has been
severely criticized from the Natural Bond Order perspective [59] as well as on
grounds of basis-set related numerical instabilities [60]. It was suggested that the
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Natural Energy Decomposition Analysis (NEDA) [61] emerges as a clear alter-
native being conceptually better justified and better converging to asymptotic
classical entities. The main critique was directed to the decomposition using
non-orthogonal fragments in the short-range region of covalent bonding, where,
because of the larger overlap, conceptual ambiguities increase. It leads in the case
of ETS to inaccuracies when calculating the DEElstat term, which further propagates
into the DEP and the DEorb terms.

In this work, we applied the ETS model using two different starting approx-
imations for the reference fragments – atomic and ionic ones. We have stated that it
is the ionic reference point which provides a starting point for the rather localized
d-electrons (and our analysis applies only to those cases). For localized d-electrons
the ligand–metal overlap is very small and we think that the main arguments (the
bigger overlap) against the ETS method does not hold for this class of compounds.
In spite of this, we feel that other energy partitioning schemes, such as the NEDA
deserve increased attention in the future. However, to our knowledge, the method
has not yet been applied to TM compounds. We hope that the present study will
stimulate some work in this direction.
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